

(C) Show that $w = \frac{5-4z}{4z-2}$ transform the circle $|z| = 1$ into a circle of radius unity in w -plane and find the centre of the circle. 6

(D) Find the bilinear transformation which maps the points $z_1 = 2, z_2 = i, z_3 = -2$ into the points $w_1 = 1, w_2 = i$ and $w_3 = -1$ respectively. 6

5. (A) For the function $f(x)$ defined by $f(x) = 0, -\pi \leq x < 0$ and $f(x) = \pi, 0 \leq x < \pi$, show that the Fourier series converges to $\pi/2$ at the point of discontinuity $x = \pi$. 1½

(B) Find the Fourier coefficients a_0 and a_n for the function defined by $f(x) = 0$ for $-2 \leq x < 0$ and $f(x) = 1$ for $0 \leq x < 2$. 1½

(C) If $f_1(x) \leq f_2(x)$ on $[a, b]$, then prove that

$$\int_a^b f_1 d\alpha \leq \int_a^b f_2 d\alpha. \quad 1\frac{1}{2}$$

(D) For any partition P of $[a, b]$, prove that $L(P, f) \leq U(P, f)$. 1½

(E) Prove that an analytic function with constant real part is constant. 1½

(F) Prove that the function $f(z) = xy + iy$ is not analytic. 1½

(G) Find the fixed points of the bilinear transformation $w = \frac{z}{z-2}$. 1½

(H) Show that $w = iz + i$ maps half plane $x > 0$ onto half plane $v > 1$. 1½

Bachelor of Science B.Sc. Semester-V (C.B.S)
Examination
ANALYSIS
(M₉) Mathematics Paper-I

Time—Three Hours] [Maximum Marks—60

N.B. :— (1) Solve all the **FIVE** questions.
 (2) All questions carry equal marks.
 (3) Questions 1 to 4 have an alternative; solve each question in full or its alternative in full.

UNIT—I

1. (A) If the Fourier series of the function $f(x)$ on $-\pi \leq x \leq \pi$ is defined by

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx), \text{ then find}$$

the Fourier coefficients a_0, a_n and b_n . 6

(B) Find the Fourier series of the function defined by $f(x) = 0, -\pi \leq x < 0$ and $f(x) = \pi, 0 \leq x \leq \pi$. 6

OR

(C) If α is not an integer, then show that

$$\cos \alpha x = \frac{\sin \alpha \pi}{\alpha \pi} + \frac{2\alpha \sin \alpha \pi}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{\alpha^2 - n^2} \quad \text{for } -\pi \leq x \leq \pi. \quad 6$$

(D) Find the Sine series for the function

$$f(x) = \cos x, 0 \leq x \leq \pi. \quad 6$$

UNIT-II

2. (A) If P^* is a refinement of a partition P of $[a, b]$, then prove that :

$$U(P^*, f, \alpha) \leq U(P, f, \alpha).$$

where α is a monotonically increasing function on $[a, b]. \quad 6$

(B) Let $f \in R(\alpha)$ on $[a, b]$. For $a \leq x \leq b$, put

$$F(x) = \int_a^x f(t) dt. \text{ Then prove that the } F \text{ is continuous on } [a, b]. \quad 6$$

OR

(C) If $f \in R$ on $[a, b]$ and if there is a differentiable function F on $[a, b]$ such that $F' = f$, then prove that

$$\int_a^b f(x) dx = F(b) - F(a). \quad 6$$

(D) If f is continuous on $[a, b]$ then prove that $f \in R(\alpha)$ on $[a, b]. \quad 6$

UNIT-III

3. (A) If $f(z) = u + iv$ is an analytic function and $z = re^{i\theta}$ where u, v, r, θ are all real, show that the Cauchy Reimann equations are :

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}. \quad 6$$

(B) If $f(z)$ is an analytic function of z , prove that :

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) |f(z)|^2 = 4 |f'(z)|^2. \quad 6$$

OR

(C) If u and v are harmonic in a region R , then prove

$$\text{that } \left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) + i \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \text{ is analytic in } R. \quad 6$$

(D) If $u = x^3 - 3xy^2$, show that there exists a function $v(x, y)$ such that $w = u + iv$ is analytic in a finite region. 6

UNIT-III

4. (A) Determine the region R' in w -plane corresponding to the triangular region R bounded by the lines $x = 0, y = 0$ and $x + y = 1$ in z -plane under the transformation $w = z e^{i\pi/4}. \quad 6$

(B) If there are distinct invariant points p and q , then show that the bilinear transformation may be put in

$$\text{the form } \frac{w-p}{w-q} = k \frac{(z-p)}{(z-q)}, \text{ where } k = \frac{a-cp}{a-cq}. \quad 6$$

OR